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Higher-Order Susceptibilities of the Regular and the 
Random Ising Model on the Cayley Tree. I 
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Explicit expressions for the fourth-order susceptibility X (4) , the fourth derivative 
of the bulk free energy with respect to the external field, are given for the regular 
and the random-bond Ising model on the Cayley tree in the thermodynamic 
limit, at zero external field. The fourth-order susceptibility for the regular system 
diverges at temperature Tc (4) = 2kB-JJ/ln(1 + 2 / [ ( z -  1) 3 / 4 -  1]), confirming a 
result obtained by Mfiller-Hartmann and Zittartz [Phys. Rev. Lett. 33:893 
0974)]; Here z is the coordination number of the lattice, J is the exchange 
integral, and k~ is the Boltzmann constant. The temperatures at which X (4) and 
the ordinary susceptibility X (2) diverge are given also for the random-bond and 
the random-site Ising model and for diluted Ising models. 

KEY WORDS: Cayley tree; Ising model; higher-order susceptibilities; criti- 
cal temperature; phase transition; random Ising model; diluted Ising 
model; critical concentration, 

1. INTRODUCTION 

Matsuda (1) and von Heimburg and Thomas (2) showed that the susceptibil- 
ity at zero external field of the regular Ising model on the Cayley tree 
diverges at T~ (z) =- 2k  s q / I n (  1 + 2/ [ (z  - 1) 1/2 - 1]}, a temperature lower 
than the critical temperature of the Bethe lattice T s =-- k s 1J / ln[z / ( z  - 2)], 
where the l o c a l  susceptibility at a site near the center of the Cayley tree 
diverges. Here J is the exchange integral, z is the coordination number of 
the lattice, and k8 is the Boltzmann constant. This fact was confirmed by 
the explicit expressions for the susceptibility. (2'3) 

Mfiller-Hartmann and Zittartz (4) investigated the b u l k  free energy of 
the regular system as a function of the external field and showed that its 
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(2n)th derivative with respect to the external field, X (2") diverges at T~ (2") 
= 2 k ~ l J / l n { 1  + 2 / [ ( z -  1) 1 -1 /2" -  1]) at zero external field, for n = 1, 
2 . . . .  ; we shall call X (2~) the (2n)th susceptibility. Falk (5) obtained an 
upper bound to the nonpositive quantity X (4) and showed that the upper 
bound diverges to minus infinity for all 0 < T < T~(4); 2 notation u (4) is 
often used in place of - X  (4). For the diluted Ising model, Heinrichs (6) 
studied the higher-order susceptibilities at low temperatures and showed 
that the critical concentration pc (2n) at which T~ (2~) = 0 is equal to p(2~) 
= ( z  - 1) -(2n- ~)/2~.3 Gonqalves da Silva (7) studied the divergence of X (2") 
for the random-bond Ising model with equal probabilities of exchange 
integrals J and - J .  Horiguchi and Morita (8) discussed the divergence of 
X (2") for the general random-bond Ising model. The purpose of the present 
series of papers is to give an explicit expression of the zero-field value of the 
(2n)th susceptibility for the regular as well as for the random Ising model 
on the Cayley tree, to confirm Mfiller-Hartmann and Zittartz's result for 
the regular system, to confirm Heinrichs' result for the diluted system, and 
to give the temperatures when X ~2~) diverges also for the random systems. 

In the present series of papers, we study the properties of the whole 
system on the Cayley tree at the thermodynamic limit, and do not discuss 
the properties at the central part of the Cayley tree. We consider Cayley 
trees of coordination number z with (N + 1) shells (generations) and take 
the limit N ~ 00. We have only one site on the zeroth shell. We call the site 
the zeroth site; see Fig. 1. That  site is assumed here to have only B = z - 1 
nearest neighbors, and then the total number of the sites in the system N, is 
given by 

B N + l -  1 
N ~ -  B - 1  (1.1) 

For the Ising model on a Cayley tree of (N + 1) shells, we denote the 
free energy of the system under an external field h by F(N,h) :  For the 
regular system it is given by 

- f lF (N , h )  = l n T r [ e x p ( -  f i l l ) ]  (1.2) 

where H is the Hamiltonian of the system given by 

H = - h • o , -  E EJy~176 (1.3) 
i i > j  

(i, j: n.n.) 

2In (28) of his paper (5) the symbol < was omitted by the printer and should appear just after 
-304. 

3According to reference 6, the odd-order susceptibilities X (2"+1) also diverges at the eoncen- 
trationp(2n+ 1) = (z - 1) -2"/(2n+ 1) for n = 1,2, . . . ,  at zero temperature. But the odd-order 
susceptibilities • are quantities which involve an average of a product of an odd 
number of spins, and are zero for the present system in zero external field. 
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and J~j = J. Here a i is the spin variable, taking on __. 1, for the site i, and 
(i, j :  n.n.) denotes that the sites i a n d j  are nearest neighbors of each other. 
fl = 1 /k sT  and T is the absolute temperature. We define the nth suscepti- 
bility per site X (n~ (N, h) of this system by 

~,-1 ~"[-~F(N,h)]  (1.4) 
X(")(N,h) - N, O( flh)" 

We then define the thermodynamic limits X (") and X~ ") by 

X (") = lim x(n)(N,h = 0) (1.5) 
N---> ~ 

X~ ") = lim lim X(")(N,h) (1.6) 
h--)0 N---) ~ 

For random systems, J~ in (1.3) are random numbers governed by a 
distribution function, and the quantity on the right-hand side of (1.2) must 
be averaged with respect to the distribution functions of {Jo}" 

In Section 2 of the present paper, we calculate the fourth-order 
susceptibility X (4) for the regular system. We consider the second or 
ordinary susceptibility X (2) in Section 3. We discuss ~((4) and X (2) for the 
random-bond and the random-site Ising model and for the diluted Ising 
model in Sections 4 and 5. Section 6 is a summary. A proof of the equality 
X (") = X(r n) for general n and the calculation of the higher-order suscepti- 
bilities X (2") are left for separate papers of this series. 

2. FOURTH-ORDER SUSCEPTIBILITY 

In the present section, we focus on the fourth-order susceptibility, the 
fourth derivative of the free energy with respect to the external field, for a 
regular Ising model. For a finite system, it is expressed as follows: 

B 3 
X(4)(N,0) -- ~ ~ / E  E E[(OiOjOkOl~--(OiOj~(OkOl~ 

�9 j k t 

--  <" i"~) ("S" , )  --  ( ~ 1 7 6  ] ( 2 . 1 )  

at zero external field. Here (A)  denotes 

(A)  = Tr e - ~/t~ e -/~n0 

-o  = -  Y, E s,j io,, 
i > j  

(i, j :  n.n.) 

where J~j = J for a regular system. 
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The average (oioj) is expressed by the diagram composed of two 
vertices at the sites i a n d j  and the bonds on the route from one of the sites 
i to the other j  on the lattice, and the value of (oioj) is equal to the product 
of factors w = tanh(flJkt) for the bonds (kl) on the diagram. The product 
(oioj)(o~ot) is represented by the diagram obtained by superposing the 
diagram for (oioj) on the diagram for (Okol). In this diagram, the super- 
posed two parts may be either disconnected, or have one point in common, 
or have in common a number of subsequent bonds, which we call double 
bonds. For the three terms (o iOj ) (OkOl )  , (OiOk)(OjOl) , and (OiOl) (OjOk)  , 
there occur the following two alternatives: (i) The diagrams for the three 
terms are all connected and equal to each other, having no double bonds. 
Each of the three have the same contribution as (oi~o~ol), and is called the 
diagram for the vertices at i, j ,  k, l. (ii) One of them is disconnected and 
cancels the contribution of (oiojo~o~) in (2.1) exactly. The other two are 
connected, with double bonds, and each has the same contribution. We call 
this diagram with double bonds the diagram for the vertices at i, j ,  k, l in 
this case; see Fig. 1 for an example. By using these observations and the 
definition of the diagrams for the vertices at i, j,  k, l, (2.1) is reduced to 

B 3 X(4)(N, 0) = - 2 ~ ~i ~ ~ ~ [the diagram for the vertices at i, j , k , l ]  
�9 j k l 

(2.2) 

In calculating the sum in (2.2), we first note that (i) the same diagram 
with four fixed sites for the vertices appears repeatedly for all the different 
ways in which labels i, j ,  k, l are associated to the four sites for the vertices. 

Let us consider a diagram in the summand. Let us assume that the 
vertices and the edges of the bonds constituting the diagram are on the 
shells from the sith to the sfth. Only one point on the sith shell is occupied 
by a vertex or an edge of a bond of the diagram; see Fig. 1 for an example. 
We call that site the top of the diagram. We have topologically equivalent 
diagrams, having the top at all the different sites within [ N -  ( s f -  si)] 
shells. Hence we have [BN-(~I -~')+1 - 1 ] / [ B -  1] equal contributions, so 
that we have the contribution 

BW-(sl-s,) +1 _ 1 [the diagram with a fixed top position] 

to the sum in (2.2). Taking account of the factor I /Ns,  the contribution to 
-X(4) /2 f l  3 in the limit of N o  oo is 

B -(~-s')[ the diagram with a fixed top position] (2.3) 

In order to account for the factor B-(~-~'), (ii) factor B -1 is associated to 
each shell to which a bond of the diagram belongs. 
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We classify the diagrams with a fixed top position by the structure 
between the sith shell involving the top position and the (s i + 1)th shell. 
Figure 2 shows all the possible structures. On each structure, the numeral 
above the line for the sith shell is the number of vertices which coincide 
with the top position. The numeral 1 or 2 associated to each line between 
the two shells denotes the number of vertices connected to the line on the 
(s i + 1)th shell or below it, and also it shows that the line is a simple or 
double bond, accordingly. The set of numerals, 3, 1, denotes that the 
number of vertices connected to the line on the (s i + 1)th shell or below it is 
three and the line is a simple bond. The number of ways of drawing one, 
two, three, and four bonds from the top site, are B, B ( B  - 1), B ( B  - 1) 
(B - 2), and B ( B  - 1)(B - 2)(B - 3), respectively. We have a factor B - l 
stated above in addition. When we have 1, 2, 3, and 4 vertices on the s~th 
shell, we associate i, j ,  k, l to it in (~), (~), (4), and (44) ways, respectively. 
Then we write X (4) a s  follows: 

X (4) = - �89 Bag(4) (2.4) 

g(4) = 4 [ ( 4 )  + (4)wf(1) + (4)w2f(2)  + (4 )w,  f(3) 

+ (41 . l>w.l: l ,>+ 

+ (B - 1)wwif(3,  1) + (B - 1)w 2 1  f(2,2) 

1 + (B - I)(B - 2)wZw2 ~ f(2, 1, 1) 

+ ( B - 1 ) ( B - 2 ) ( B - 3 ) w 4 1 f ( 1 , 1 , 1 , 1 ) ]  (2.5) 

Here w E and w 1 are the factors for the lines labeled by 2 and (3, 1), 
respectively, in Figs. 2 and 3. Within the present section, w 2 and w 1 are put 
equal to w 2 and w, respectively: 

w 2 = w 2, w I = w (2.6) 

The factors 1/2!, 1/2!, 1/2!, 1/3!, and 1/4! are placed in front o f f ( l ,  1), 
f(2, 2), f(2, 1, 1), f(1, 1, 1), and f(1, 1, 1, 1) respectively, so that we can calcu- 
late their contributions regarding the lines with the same number as 
distinctive. The diagrams for f(1), f(2), f(1, 1) . . . .  on the sth shell are 
classified by the structures between the sth and (s + 1)th shells as in Fig. 3. 
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They give 
f(1) = 1 + wf(1) (2.7a) 

f(1, 1) = 2 + 2 • 2wf(1) + Bw2f(1, l) (2.7b) 

, +  ,)+ w i 2) 

Solving these for f(1), f(1, 1), f ( 2 ) , . . . ,  we have 

1 (2.8a) 
f ( 1 )  - 1 - w 

f(1, 1) - 1 [2 + 2 • 2wf(1) ] (2.8b) 
1 - Bw 2 

! ! + wf(1)  + (B  - 1) • ~ f (1 ,  1) (2.8c) f(2) - 1 - w z 

f (1 ,  1, l) - -  1 1 - BZ, v 3 [3 !+3  • 2 • 3wf(1) + 3 x 3Bw2f(1, 1)] (2.8d) 

l {3+(3+3• f (2>  1) i 1 1 B w w 2  

1 • B(B-1)w3~.f(1,1,1)} (2.8e) 

f ( 3 ) -  1 -lwl [l + 3wf(1)+ 3w2f(2)+ 3(B_ l)w21f(1,1) 

+ ( B -  1)ww2f(2,1 ) + (B-  1)(B - 2)w 3 ~I  f (1 ,  1, 1)] (2.8f) 

f ( l ' i ' l ' l ) -  l [4!+4!x4wf( ')+4• - B'w 4 

+ 4 X 4B2w3f(1, 1, 1)] (2.8g) 

1 (4•215215215 f (2 ,  1, 1) - -1 - B2w2w 2 

+[4•  l + 4 ' B + ( 4 ) B ]  

• w~f(1, 1) + 4 • 2Bww2f(2, 1) 

1 BIw3 + 4B[2(B - 1) ~ + 

1 B2(B _ 1)w~f(1, 1, 1, 1)) (2.8h) x f (1 ,  1, 1) + 
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1 {4 + (4 + 4 X 3)wf(1) + 4 • 3w2f(2 ) + 4w,f(3)  f(3, l )  - 1 - Bwwl 

+ [ 4 •  

+ [4B + 4(B - 1)]WWzf(2, 1) 

1 ]w~(1, l, 1) + In,B- 1 )~-  2)~ +4 • ~ -  1>5 

+ B ( B  - 1)wZw2f(2, I, 1) 

+ B ( B - 1 ) ( B - 2 ) - ~ t .  w4f(1,1,1,1))  (2.8i) 

+ [ 4 • 2 1 5  1 ] w f f ( 1 , l )  

+ 4 • 2Bww2T(2, 1) + 4 • 2 B ( B  - 1) 1 wff(l,  1, 1) 

+ B(B  - 1)wZw2f(2, 1, 1) 

+(-~v.)2B(B - 1)Zw~f(l, 1, 1, l ) )  (2.8j) 

These equations are solved from the top equation successively. The func- 
tions f(1, 1), f(1, 1, 1), and f(1, 1, 1, 1) are obtained from f(1) by iterations 
between themselves: 

2(1 + w) 
f(1, 1) = (1 - w)(1 - Bw 2) (2.9a) 

3! (1 + 2w + 2Bw 2 + Bw 3) 
f(1, 1, 1) = (1 - w)(1 - Bw2)(1 - B 2 w  3) (2.9b) 

f(1, l, 1, l) 

4!(1 + 3w + 5Bw 2 + 3Bw 3 + 3BZw 3 + 5BZw 4 + 3B3w 5 + B3w 6) 

(1 - w)(1 - Bw2)(1 - a2w3)(1 - B3w 4) 

(2.9c) 
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If we use the relations (2.6), the other quantities f(2) , f(2,  1) . . . .  are 
expressed in terms of these by simple relations, which are given in the 
Appendix. In particular, g(4) is given by 

1 1 [ (B-1)w2(1-w2) 1 
- ~ fl-ax(a) = ~ g ( 4 ) =  1 ( 1  - w 4) + 6(1 ---B-w-~ f(1, 1, 1, 1) 

2w(1 + w)(1 - w 2)  

+ 3(1 - Bw 2) f(1,  1, 1) (2.10) 

Now we see that g(4) is expressed as a sum of products of 1/(1 - 
BSv m) with n < m < 4. When w is increased from zero, the factor 1/(1 - 
B 3wa) first diverges. The coefficients are all positive and hence there is no 
possibility that the coefficients of 1/(1 - B 3 w  4) cancel. Thus we see that 
X ( 4 )  = __ I flag(a) really diverges when B 3W4 = 1. 

3. SUSCEPTIBILITY 

Before going to random systems in next sections, we consider the 
ordinary susceptibility per site: 

fl X(2)(N, 0) = ~ ~ / ~  (oioj~ (3.1) 
J 

at zero external field. We now have diagrams with two vertices. We 
calculate (3,1) by classifying the diagrams by a fixed top position. The 
diagrams for/3-1X(2) = g(2) are classified into three diagrams, which are 
the first three given in Fig. 3c. Thus we get 

13 - 'X  (2) = g(2) = 1 + 2wf(1) + (B - 1)w 2 1  f(1, 1) (3.2) 

By substituting from (2.8a) and (2.8b), we obtain 

X(2)_ f l ( l + w )  2 
(3.3) 

1 - Bw 2 
a result given previously. (2'3) 

4. RANDOM-BOND ISING MODEL AND DILUTED ISING MODELS 

We now consider the random system for which the exchange integrals 
Jo for bond /j are random numbers governed by a distribution function, 
independently of the values of Jkl on other bonds. The calculation for that 
case proceeds in a similar way to the preceding sections. The only differ- 
ence is that we have an average with respect to the distribution of (J/j) on 
the right-hand side of (2.1) and, as a consequence, w and w~ must be 
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replaced by their averages in (2.5), (2.7), and (3.2) and hence in (2.8), (2.9), 
and (3.3); so that we put 

w = ( tanh( /3J) )  C (4.1) 

w~ = (tanh~(/3J))c (4.2) 

where (A (J))c for an arbitrary function A (J )  of J denotes 

(J))c = f A (J)P(J) dJ (4.3) (A 

where P(J) is the distribution function of J for each bond. 
Now X (4) is given by (2.4), (2.5), and (2.8). Some of (2.8) may be 

replaced by (2.9). The factor which diverges at the highest temperature is 
either 1 / ( 1 -  B3w 4) or 1 / ( 1 -  Bw~). In a preceding note, (8~ we define 
functions/32(x) and/31(x ) by denoting the positive solution t3 of (tanh2(/3J) 
)~ = x by/32(x ) and the smallest positive solution/3 of I(tanh(/3J))c t = x 
by/31(x ). If we denote 

/3(4) = fl l(B-3/4),  /3(4) = fl2(B-1/2) (4.4) 

and then 

fl(4) = min(/3(4), /3(4)) (4.5) 

the highest temperature Tc (4) a t  which a term in the X (4) diverges is given by 

Tc (4) = 1 /ksf l  (4) (4.6) 

The ordinary susceptibility X (2) is given by (3.3) with (4.1). It diverges 
at T~ (2) = l/kBfl~ (2), where fl(2)is given by 

fl(2) = /3~2)~-- fll(B- l/Z) (4.7) 

In the special case of diluted-bond Ising model, where the probabilities 
of the exchange integral to be J and 0 are p and 1 - p, respectively, w and 
w, are 

w = p  tanh(/3J),  w, = p  tanh"(/3J) (4.8) 

diverges at T =  T (4) = 1/kBfle (4) when B3w 4= l; it is In this case,  X (4) 
given by 

B 3p4 tanh4(/3(4)j) = 1 (4.9) 

The critical concentration p}4) at which T~ (4) -- 0, is given by 

10 (4) ~ B - 3 / 4  (4.10) 

In the diluted-site Ising model where the probability of the magnetic 
site is p, and the exchange integral between a nearest-neighbor pair of 
magnetic sites is J,  the fourth-order susceptibility X(4_~s is obtained from the 
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corresponding one X(4~b for the diluted-bond Ising model considered in the 
preceding paragraph, by multiplyingp as a factor for the top site on the sith 
shell: 

X(4r ) = p X ( 4 r ) . b  (4.11) 

In a succeeding paper, we show that v (2n) ,,,(2n) in general. The critical r r-s ~-  f f  A.r-b 

temperature T~ (4~ and the critical concentration p}4) are given by (4.9) and 
(4.10), respectively. Equation (4.10) for this case was obtained by Hein- 
richs.( 6~ 

The ordinary susceptibility X(~_~ b for the diluted-bond system is given 
by 

q2 
X(r2-~b = /3[ 1 + p tanh( f i J ) j  (4.12) 

1 - Bp 2 tanh2(fiJ) 

and then X(2), is equal to pX(2r)b . This expression for X(r2.~s is consistent with 
Heinrichs' equation (36a) (6) at 13-  oe. 

5. RANDOM-SITE ISlNG MODEL 

In the present section, we consider the random-site Ising model where 
the species /~i of each site i is distributed by a probability distribution 
function p(l~i), independently of other sites, and the exchange integral 
between a nearest-neighbor pair of sites of species # and/~' is J(/~/~'). Now 
we have the average with respect to the probability density of the species 
(/~i} on the right-hand side of (2.1). As a consequence, we have 

X (4) = - -  2 I- 133 E p ( ~ ) g ( ~ ) ( 4 )  (5.1) 
# 

g("t(4) = 411 + 4~-'] w(/~/~')p (/~')f("')(1) + 6 2 w2(/~')p ( #')f( "')(2) 
k 

+ 4~ ' ]w, ( l~ ' )p ( t . t ' ) f ( " ' ) (3 )  
bt ' 

+ 3(B - 1)~, EW(ll, ttl)W(~2)lo(lJ,1)17(~t2)f(lz't~z)(1, 1) 
~1 /~2 

+ 4(B - 1 ) ~  2 w(/~/~1)w2(/qL2)p (/z,)p (/~2)f ( "1 ~'2)(2 ' 1) 
Pq /~2 

1 +.- - j  (5.2) 
in place of (2.4) and (2.5), where 

w(/z/~') = tanh[ f l J ( g ,  g')],  wp(/~g') = w(#/~') p (5.3) 
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(2.7) is replaced by 

f(I~)(1) = 1 + ~ w(/,/, ')p( #)f(~')(1) (5.4a) 

f(  ", t~2)(1, 1) = 2 + 2 ~ w( ~t,/,')p (/t ' )f  ("')(1) + 2 ~ w( ~2 tz')P( ~')f(~')(1) 
/z' /*' 

+ B ~ ~ w (  Izllx'l)w( lz2lz'2)p( tz'j)p( tz~)f(~q/~l(1, 1) (5.4b) 

/(")(2) = 1 + 2 ~ ,w(  l~,')p( tz')f("')(1) + �89 - 1 ) E  E w (  lxlxl)w( l*l*2) 

/~' 
. . . 

The equations corresponding to (2.8) are obtained from these equa- 
tions by using the solutions of the eigenvalue problems of the matrices A (~ 
of which/~/~' elements are given by 

A (~)(~,~,') = p(  t*)'/Zw( ~ ' )~p (  ~')'/'~ (5.5) 

The eigenvalues and eigenvectors of A (~) are denoted by Kff)(fl) and Off): 

A (~) q,ff) = xff)( fl )q~ ~) (5.6) 

We write x~l)(fl) and ~1) simply as x,(/3) and q,.. We denote the elements 
of ~ff) as ,/,if)(/,), and normalize 4,ff ~ so that I~")[ 2 = ~ q ,  ff)(#)2 = 1, then 
we obtain 

1 C~(1) (5.7a) p(la)~/2f(")(1) = ~eO,~(#)~, 1 - ~ ( f l )  

C~(I) - (q,~, p,/2) (S,8a) 

19(~1) l /2p ( 1,2)'/2f ( ""~)(1, 1) 

l 
= ~, ~q~'(/z')~'~(/z2)~2 1 - B~,~,(fl)x,~(fl) C.,~2(1, 1) (5.7b) 

l) = Z 

• { rhs of (5.4b), excluding the last term} (5.8b) 

p(#)~/2f(,)(2 ) = ~-~ q5(2)(/~) 1 1 - x~2)(/3) C~(2) (5.7c) 

Ca(2) = E , (2)( /~)p(  [l,)1/2 
/* 

• (rhs of (SAc), excluding the last term} (5.8c) 
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(~ba, pl/2) in (5.8a) denotes 

(q, , p, /2) =_~ e~( #)p( /z) 1/2 (5.9) 

Solving these equations from the top equation and substituting the solu- 
tions into (5.1) and (5.2), we obtain an expression for X ~4). In the expres- 
sion, the factor 

- B ~o, (il)~o, (il) 1/ [1  k- ,  <,,) <,~ . . . K~ff)(fl)] (5.10) 

appears in place of the factor 1/(1 - B k-  lw,,w~2 �9 �9 �9 w~). We can easily see 
that the factor which diverges at the highest temperature is either 

where K}")(il) is the eigenvalue of the largest absolute value among Q~)(/3). 
In a preceding note, (9) we define fl2(x) and ill(X) by denoting the positive 
solution/3 of K}2)(fl) = x by ila(X) and the smallest positive solution il of 
IXl(il)l = x by i l (x ) .  Then we obtain T~ (4) as (4.4)-(4.6). 

For the susceptibility X (2), (3.2) is replaced by 

fl - 'X ~2) = ~ p(/~)g~ ")(2) (5.11) 
/t 

g(")(2) -- 1 + 2~-] w(##')p(/~')f(~')(1) + (B - 1 ) ~  ~ w(#/z,)w(/z/~2) 
p,' ~1 /t2 

•  (/~2)f ( ~ ~:)(1, 1) (5.12) 

By substituting (5.7a), (5.7b), and (5.8b), we obtain 

~o(il) 
fl-lx~2) = 1 + 2 ~  1 ----~(fl) (~b~' pl /2)2+ 2 ( B -  1)~-]a, ~]~2 

[ ] • ~p(/Ql/2+:,(/~)q,~2(/z ) 1-Bx, , , ( f l )~,~2(f l)  

~,(il) 
• (,o,,p,/2)(%,pl/2)+  oi(il) 

~~ ) (5.13) + (*o,' P") 1 
The highest temperature at which this expression diverges is determined by 
BXl(fl) 2=  1, which gives T~ 2) = 1/k~il~ 2), where 

fl[2) = fll( B - , /2)  (5.14) 
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The diluted-site Ising model is naturally treated by the method i~n this 
section. We then see that X~4)s and X~r2)s for this model are equal to the 
products of the concentration of magnetic sites and X~4)b and X~]_)b, respec- 
tively, for a diluted-bond system, as stated at the end of the preceding 
section. 

6. SUMMARY 

An explicit expression for the fourth-order susceptibility X (4) is ob- 
tained for the Ising model on the Cayley tree. For the regular system it is 
given by (2.10) with (2.9) and w = tanh(J /kBT ). For the random-bond 
Ising system, X ~4) is given by (2.4), (2.5), (2.8), (2.9), (4.1), and (4.2). The 
ordinary susceptibility X ~2) for that system is given by (3.3) with (4.1). For 
the diluted-bond Ising model, we have (4.8) in place of (4.1) and (4.2), and 
X ~2) is given by (4.12). The susceptibilities for the diluted-site Ising model 
are obtained by multiplying the concentration of magnetic sites to those for 
a corresponding diluted-bond Ising model. For the random-site Ising 
model, X ~2) is given by (5.13). As for X ~4) for this system, only an 
explanation is given of the way of obtaining the explicit expression. The 
temperatures at which X ~2n) diverge are investigated for the random-bond 
and the random-site Ising model in separate notesJ 8'9) 

A C K N O W L E D G M E N T  

The problem of giving an explicit expression of X ~4) for the regular 
Ising model on the Cayley tree was raised by Professor I. Syoji, when the 
present authors reported their results in Ref. 3. 

APPENDIX: SOLUTION OF (2.8) 

The solution of (2.8) obtained by taking account of the relations (2.6) 
is given by (2.9) and the following equations: 

f(2) = �89 l) 

f(2, 1) = I f ( l ,  1, 1) 

f(3) = I(1 + w + w2)f(1, 1, 1) 

f(2, 1, 1) = �89 1, 1, 1) 

f(2, 2) = �88 f ( l ,  1, 1, 1) 

1 1 - B w 4 f ( 1 , 1 , 1 , 1 )  + 
f ( 3 , 1 ) =  6 1 Bw 2 

2 w(1 + w) 
3 ] - - B ~  f(1, 1, 1) 
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